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Multiple objective combinatorial optimization problems 
 
Abstract : 

 
Many sectors are concerned with complex problems of great dimention that must be 

optimized. These optimization problems are seldom single-objective : usually, there are 

several contradictory criteria or objectives that must be satisfied simultaneously. Multi -

objective optimization is a discipline centered in the resolution of this kind of problems. It 

has its roots in the 19th century in a work economy of Edgeworth and Pareto. Initially, it was 

applied to economic sciences and management, and gradually to engineering sciences. 

Combinatorial optimization is a held extensively studied by many researchers. Due to its 
potential for application in real world problems. 

In this paper, we present  a general formulation of Multiple objective combinatorial 

optimization (MOCO) problems, describe the main characteristics of MOCO problems, and 
the most important  properties and theoretical results for these problems. Also, we propose 

to enrich the surveys by providing an analysis of recent innovative approaches in this 
domain. 
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Introduction 

Multiple objective combinatorial optimization (MOCO) has become a quickly growing  field in 

multiple objective optimization, and has recently attracted the attention of researchers both from 
the fields of multiple objective optimization and from single objective integer programming [ 

Ehrgott and Gandibleux (2000) ]. 
Many real world decisions cannot  be performed by comparing alternatives  through  a single 

value.  Instead,  it is more realistic to associate several values to each alternative, according to 

several criteria,  points of view or  states  of the world.  In the case of criteria,  this gave rise to 
the subject of multiple criteria decision making (MCDM). MCDM mainly embraces multiple 

criteria decision aid (MCDA) and multi-objective  optimization (MOO). While the former 

focuses on situations  where the set of alternatives  of a decision problem is defined in extension 
and is assumed to be of small cardinality,  the latter  faces a large, possibly infinite, set of 

feasible solutions.  Therefore, most developments in MCDA focus on modeling issues, trying  

to determine  and use in  the best way the decision maker’s preferences in order to formulate  
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the  most  valuable  recommendation  regarding  a practical  decision problem.   In contrast, 

MOO primarily  faces computational issues arising from multiple  and  conflicting objective 

functions  even when the  single objective version of the  problem  is easily solved. MCDM in 
general finds numerous real world applications  and so does MOO:[Ehrgo t t   (2008)] details 

some of them in various fields such as finance, transportation, medicine, and telecom- 

munication.  Also [Clímaco and Pascoal  (2012)] briefly survey recent applications  in routing 
problems and telecommunication networks. 

Several practically  efficient algorithms  have been proposed from the end of the seventies to 

enumerate efficient solutions in multi-objective  combinatorial  optimization (MOCO).  Most 
proposals first addressed the bi-objective case which has interesting  and exclusive properties 

compared  to higher dimensional problems.  The generalization  of these algorithms  to more 
than two objective functions started to produce good practical results during the last decade. It 

turns  out that  most exact multi-objective algorithms  fall into one of the two  following 

categories. 

The first category  corresponds to implicit  enumeration, that  is, iterative  partitioning of 

the  instance  and  elimination  of dominated  subinstances.   Thus  this  kind of algorithm 

primarily  acts in the decision space.  Two main approaches  are concerned: mult i-objective 
branch  and bound (MOBB)  and dynamic programming [Bazgan   et  al.  (2009)]  for the  

implementation of these  two  methods  in the  general multi-objective case. 

The second category  contains  algorithms  that  primarily  act  in the  objective space, at- 

tempting  to  identify  small zones that  are individually  explored.   The  two-phase  method 
[Ulungu and Teghem (1995)] for the  original method  and [ Przybylski  et al. (2010)] for a 

generalization  to more than  two  objective functions)  falls into this category  as well as 
several methods  based on the resolution  of budget  constrained  integer programs  that  use the 

integer programming  formulation  of the underlying problem [Sylva and Crema, (2004)]. 

 
1- Multiple Objective Combinatorial Optimization Problems 

The feasible set of a (multiobjective) combinatorial problem is defined as a subset X⊆2A  of the 
power set of a finite set A = {a1, . . ., an}. For example, consider the minimum spanning tree 

problem. G = (V, A) is a graph with node set V and the edge set A, the feasible set is the set of 

spanning trees of G and X = {S ⊆ A : S is a spanning tree of G}. 

Typically, in combinatorial optimization two types of objective functions are considered, namely 

the sum and the bottleneck objective: 

z (S) = Σ w(a), or   

z (S) = max w(a), 

 

Where S ∈ X and w : A → ℤ  is some weight function. 

A combinatorial problem can also be formulated in terms of binary variables.  

For this purpose we introduce a variable xi for each element ai ∈ A. Then, a feasible solution  
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S ∈ X can be represented by a binary vector x ∈ {0,1}n  if we define 

                  1       ei ∈  S 

 Xi = 0      else.      

 
With this de_nition S = {ai : xi = 1}. It is therefore equivalent to speak about feasible solutions as 

subsets of A or about their representations by binary vectors. Accordingly X will be represented by 

a subset of {0,1}n. 

In terms of the feasible set, this definition comprises (multiobjective versions of) the shortest  path, 

minimum spanning tree, assignment, knapsack, travelling salesperson, or set  covering problems, to 

mention only a few. 

In a multicriteria combinatorial problem several weight functions wj : A → ℤ  are given, yielding 

several objective functions zj , j = 1, . . .,Q (usually of the sum or bottleneck type). The problem is 
then to solve 

“ Min” (z1(S), . . ., zQ(S)) 

Most often the minimization in (MOCO) is understood in the sense of e fficiency (or Pareto 
optimality). A subset S ∈ X  is called efficient if there does not exist another feasible solution S’ ∈  

X such that zj(S’) ≤ zj(S) for all j = 1, . . .,Q with strict inequality for at least one of the objectives. 

The corresponding vector z(S) = (z1(S), . . . , zQ(S)) is called nondominated. The set of Pareto 

optimal (efficient) solutions of (MOCO) will be denoted by E.  
However, besides efficiency, there are other definitions of the "min" term in the formulation of 

(MOCO). For example, one could cons ider lexicographic minimization, when objective vectors 

are compared lexicographically: z(S1) <lex z(S2) if zj(S1) < zj(S2), where j is the smallest index such 
that zj(S1) ≠ zj(S2). This could be done with respect to one, or all permutations of the objective 

functions zj. 
Another possibility is to minimize the worst objective function, i.e. 

min max zj(S). 

 
We call this the max-ordering problem in order to distinguish it from the single objective ottleneck 

problem [Ehrgott and al (1999)]. 
A combination of the latter two is the lexicographic max-ordering problem, where the vector of 

objective values z(S) is first resorted in a nonincreasing order of its components, and the resulting 

vectors are compared lexicographically [Ehrgott (1996)]. 

In a real world decision context, finally a compromise has to be made among the many efficient 

solutions that (MOCO) may have. This is the reason why often the existence of a utility function is 

implicitly or explicitly assumed. A utility function assigns each  criterion vector z(S) a scalar 

overall utility. Then methods are developed to find a solution of maximum utility.  

Closely related to combinatorial problems are multiobjective integer programming problems. 
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These can be formulated as follows. 

                                                               " Min "   Cx    
                                    subject to         Ax  =  b 
                                                             xi ≥ 0   i = 1, . . . , n                                           (MOIP) 
                                                             xi  integer   i = 1, . . . , n 

 
Here C is a Q × n objective matrix, A is an m × n constraint matrix, and x ∈  IRn. There is a 

considerable amount of literature on these problems. We refer to some surveys that exist  but will 

not consider the literature in detail. [Climaco and al (1997)] provide surveys of techniques to find 

efficient solutions for (MOIP), [Teghem and Kunsch (1986)] gives an overview of interactive 

methods for (MOIP), and [Rasmussen (1986)] surveys (MOIP) with binary variables. 

In general, combinatorial optimization problems can be considered as special cases of integer 

(in particular binary) programming. A MOCO problem is distinguished by a specific set of 

constraints, that provides a structure to the problem. We focussed on such problems  and do not 

intend to review literature on general multiobjective binary or integer programming. 

When the set of feasible solutions is an explicitly given finite set, e.g. X = A. In this case, all 

problems discussed above are efficiently solvable. Algorithms can be found in [Ehrgott (1998)].  

To summarize, (MOCO) is a discrete optimization problem, with n variables xi, i =1, . . . , n, Q 
objectives zj , j = 1, . . . , n and a specific constraint structure defining the feasible set X. 
2- Properties of Multiobjective Combinatorial Optimization Problems 

In this section we discuss some of the properties of MOCO problems. It is in order to mention here 

that there is a considerable number of erroneous statements, even in papers  published in 

international standard refereed journals  [ Ehrgott and Gandibleux (2000) ] . We will point out the 
most important of these throughout the paper, in the appropriate places. 
By its nature, multiobjective combinatorial optimization deals with discrete, non continuous  

problems, although the objectives are usually linear functions. An essential consequence  of this 

fact when trying to determine the set of all efficient solutions (or nondominated vectors in 

objective space) is, that it is not sufficient to aggregate the objectives  through weighted sums. 

It is long known that for multiobjective linear programming problems  

Min {Cx : Ax = b , x ≥ 0} 
The set of efficient solutions is exactly the set of solutions that can be obtained by solving  LP's 

Min {Σ λ j  c
j x : Ax = b, x ≥ 0}, 

 
Where Σ λ j =1,  λ j > 0,  j = 1, . . ., n. But the discrete structure of the MOCO problem 

makes this result invalid. Thus there usually exist efficient solutions, which are not optimal for any 

weighted sum of the objectives. This is true even in cases where the constraint matrix is totally 
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unimodular, contrary to a proposition in [Kouvelis and Carlson (1992)]. These solutions are called 

nonsupported efficient solutions NE, whereas the remaining are called supported efficient 

solutions, SE. In early papers referring to MOCO, NE was usually not considered. Most authors 

focussed on scalarizing the objectives by means of weighting factors λ j . 

Nevertheless, the set NE is important. Usually there are many more nonsupported than  supported 

efficient solutions, see e.g. [Visée and al (1998)] for numerical results. Moreover, the 

nonsupported solutions contribute essentially to the difficulty of MOCO problems. Below, we 
shall briey discuss the concepts of computational complexity of (MOCO). For introductions to  the 

theory of INP-completeness and #IP-completeness we refer to [Garey and Johnson (1979)]. These 

notions deal with the difficulty of finding a, respectively counting the number of solutions of a 
(MOCO). 

In order to transfer the notions of IP, INP and #IP to MOCO we first introduce a decision problem 

related to (MOCO) in a straightforward manner: 

Given constants k1, . . ., kQ ∈ ℤ, does there                                                       
exist a feasible solution S ∈ X such that                                                                  
D(MOCO) 

zj(S) ≤ kj, j = 1, . . ., Q 
The corresponding counting problem is: 
How many feasible solutions S ∈  X do satisfy 
                                                           zj (S) ≤ kj, j = 1, . . ., Q                                    
#(MOCO) 
It turns out that the respective versions of (MOCO) in the sense of finding or counting efficient 

solutions are in general INP- and #IP-complete, respectively. This is true even for problems which 

have efficient algorithms in the single objective case. We refer to [Emelichev and Perepelitsa 

(1991)] and [Ehrgott (2000)] for results in this respect. Therefore the development of heuristics 

with guaranteed worst case performance (bounded error) is interesting. However, not much is  

known in this regard: [Ehrgott (2000)] gives some general results on approximating the efficient 

set by a single solution, [Prasad (1998)] uses a Tchebycheff metric to measure the error, and [Safer 

and Orlin (1995)] consider the existence of such algorithms.  

Another aspect related to the difficulty of MOCO is the number of efficient solutions. It turns out 

that it may be exponential in the problem size, thus prohibiting any efficient method to determine 

all efficient solutions. Such results are known for the spanning tree, matroid base, shortest path, 

assignment, and travelling salesperson problem, see [Hamacher and Ruhe (1994] for details). 

Consequently such problems are called intractable. Even the size of the set  SE may be exponential. 

However, numerical results available on the knapsack problem [ Visée and al (1998)] show the 
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number of supported solutions grows  linearly with the problem size, but the number of 

nonsupported solution grows following an exponential function. As far as the other definitions of 

optimality in (MOCO) are concerned, we note that the max-ordering problem with sum objectives 

is INP-hard in general (see [Chung and al (1993)]), but can be reduced to a single objective 

problem in the case of bottleneck objectives [Ehrgott (1997)]. Bounds and heuristic methods for 

the former problem have been investigated in [Punnen and Aneja (1995)]. At least one solution of 

the max-ordering problem is always efficient, but possibly nonsupported. Similarly, a 

lexicographic max-ordering solution, although always efficient and optimal for the max-ordering 

problem may be nonsupported. 

For lexicographic optimization it is known that a lexicographically optimal solution is always  

efficient, and even a supported efficient solution, see [Hamacher and Ruhe (1994)]. Lexicographic 

optimization can also be viewed as a special case of algebraic optimization. 

In view of the new trend to apply metaheuristics and local search in MOCO problems, it is 

interesting to consider the issue of neighbourhoods of feasible solutions, and their relations to 

effcient solutions. Using a neighbourhood corresponding to Simplex basis pivots for the shortest 
path problem and exchanges of one edge for the spanning tree problem it was shown in [Ehrgott 

and Klamroth (1997)] that the set of efficient solutions can be an unconnected subset of X with 

respect to the neighbourhood. So it is possible that local search methods (in principle) cannot find 
all efficient solutions.  

3- Applied techniques of combinatorial optimization 

In this section, we briefly explain mathematical programming and simulated annealing  

3-1 Mathematical programming 

Let us first define a linear program (LP): Given an nm   Matrix A , an m -vector b , and an 

n -vector c , minimize xcT   subject to bxA  , 0x , with nRx . Generally, an LP can 

be solved in polynomial time. Most commonly the simplex algorithm is applied. Although this 

theoretically may require exponential time, it solves LPs with hundreds of thousands of variables 
in practice [Haunert (2007)]. 

By replacing the continuous variables nRx  in this definition by integer variables nZx , we 

define an integer linear program (ILP) or simply integer program (IP). Many combinatorial 
optimization problems can be formulated as IP. Though the definitions of IP and LP are very 

similar, the computational complexity of solving an IP is much higher. In fact the problem is NP-
hard. However, several algorithms have been developed for the solution of IPs, which have been 

found out to be useful for applications. A mixed-integer program (MIP) is a combination of an LP 

and an IP, i.e., it may contain continuous as well as integer variables. Basically, a MIP can be 
solved with the same techniques as an IP. 



Les cahiers du MECAS ..........................................................N° 13/ Décembre 2016 

331 
 

3-2 Simulated annealing 

The techniques described in the pervious section restrict to objectives and constraints that can be 

expressed by linear combinations of variables. Even in case that such a formulation of a p roblem is 
found, the branch-and-cut technique can turn out to be inefficient and therefore inappropriate for 

application. However, it is often not necessary to insist on finding the globally optimal result. 

Therefore, heuristic techniques have been developed. Generally, these attempt to find relatively 
good solutions in reasonable time. Two different types of heuristics need to be distinguished: 

Heuristics that are designed for a specific problem and those that offer solutions for a very general 

class of problems (meta-heuristics).  

To explain simulated annealing, let us first consider a hill-climbing method: Starting from a 

feasible solution, hill climbing iteratively moves to a solution which is cheaper according to a cost 
function c, e.g. it selects the best solution in a defined neighborhood of the current solution. The 

problem with the hill-climbing approach is that it usually gets stuck in local optima. The simulated 

annealing approach is to occasionally accept moves to worse solutions, in order to esca pe these 
local optima. For this, a temperature T is introduced, which controls the probability of accepting 

worse solutions. Initially, T is high, meaning that it is likely that worse solutions are accepted. 

During the simulation T is decreased according to a defined annealing schedule. Commonly, a 

multiplier   [0, 1] is introduced for this. The following algorithm defines the common simulated 

annealing approach [Haunert (2007)]: 

1. Find an initial feasible solution s and define the temperature by T  T0. 

2. Randomly select a solution s  in the neighborhood of s. 

3. If    scsc  , set ss  , else, set ss   with probability 

   







 


T

scsc
exp . 

4. Reduce the temperature, i.e., set TT  . 

5. Proceed with 2 until the temperature falls below a threshold TE. 

4- Classification of multi-objective combinatorial optimization methods 

 

The approaches used for MCOPs resolution can be classified in three main categories [Basseur 

and al (2006)] 

 Scalar approches : these methods imply the transformation of MCOP inti a single-

objective problem. This class of approches includes those alghorithms based on 

aggregation, wich combine the various cost functions fi  into only one objective function  

F. These techniques require for the decision maker to have a good knowledge of its 
problem. 

 Pareto approches : they are based on directly using the concept of Pareto optimality in 

their search. The process of selection of the generated solutions is based on the concept 
of non-dominance. 
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 Non-Pareto and non-scalar approaches : these approaches do not transform the MCOP 

into a single-objective problem ; on the contrary, they use operators to treat the various 

objectives separately. 

Figure 1 : Classification of multi-objective combinatorial optimization methods. 

                                                Multiobjective optimization methods 
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Resolution algorithms 

                             Exact algorithms                                                  Heuristics 

 

      Branch                  Dynamic       A*                 Specific heuristics               
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                                                           Simulated     Genetic      Tabu     Scatter     
Genetic    …. 
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approaches 
 approaches non-Pareto approaches 
 

 

                      Aggregation         E-contraint     Goal                         Parallel        
Lexicographic 
               programming selection           
selection 
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Conclusion 
         Multi-Objective Combinatorial Optimization (MOCO) explores a finite search space of 

feasible solutions and finds the optimal ones that balance multiple (often conicting) objectives 

simultaneously. MOCO is a fundamental  challenge in many design and development problems in 

engineering, in economic sciences and other domains. 

          Combinatorial optimization problems are often too complex to be solved within reasonable 

time limits by exact methods, in spite of the theoretical guarantee that such methods  will 

ultimately obtain an optimal solution. Instead, heuristic methods, which do not offer a convergence 

guarantee, but which have greater flexibility to take advantage of special properties of the search 

space, are commonly a preferred alternative. The s tandard procedure is to craft a heuristic method 

to suit the particular characteristics of the problem at hand, exploiting to the extent possible the 

structure available. Such tailored methods, however, typically have limited usefulness in other 

problems domains.  

  An alternative to this problem specific solution approach is a more general methodology 

that recasts a given problem into a common modeling format, permitting solutions to be derived by 

a common, rather than tailor-made, heuristic method. Because such general purpose heuristic 

approaches forego the opportunity to capitalize on domain -specific knowledge, they are 

characteristically unable to provide the effectiveness or efficiency of special purpose approaches.  

Indeed, they are typically regarded to have little value except for dealing with small or simple 

problems. 
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